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Transport in ionic conducting glasses 
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AMract. The frequency-dependent conductivity of glasses is explained in a treatment 
spanning the range of frequencies, 0 i w < uph 5 10” Hz. A large spread of individual 
relaxation times is assumed. The connection between low frequency AC conduction and DC 
conduction is their common origin in non-local relaxation processes. This connection has 
already been exploited to derive resulls for u(w) in the electronic systems known as the 
‘Fermi glass’ and the ‘electron glass’, which are in quantitative agreement with experiment. 
In these systems, quantitative expressions are available for the distribution of relaxation 
times, inmntrast totbe situation in ionic conducting glasses. In ionicconducting glasses, as 
in the electron glass, the effects of Coulomb interactions in the sequential correlation of 
individual transitions is critical at low frequencies when the relaxation is non-local. The 
framework of the calculations is given by percolation theory 

1. Introduction 

1.1. General comments 

The treatment given here allows relaxation between pairs of sites. The relaxation time 
for an ion hopping back and forth between two sites in any pair (over a barrier, E,) is 
given approximately by (e.g. Pollak and Pike 1972, Dyre 1988) 

where vph is a phonon frequency of order 10” Hz. The pairs of sites are not assumed 
isolated (as in the case of Elliott 1988, Elliott and Owens 1989, where such pairs are 
assumed to be found in specific configurations on non-bridgingoxygen ions) but can be 
interconnected to form a network which exists throughout the glass. The barriers 
encountered may be largely Coulombic, largely structural, or both together. The dis- 
tribution of these barrier heights, Ei, is assumed given by n(Ei). Because sequential 
correlations (described below) in hopping are assumed, this distribution is taken to be 
unaffected by the application of an external field. The form of n(E,) is unknown; 
knowledge of this distribution, as well as of any correlation between the barrier height 
and the site operation, r,, would, within the framework of the theory developed here, 
allow a quantitative calculation of the dielectric relaxation at any frequency. Even 
without detailed knowledge of n(Ei), it is possible to demonstrate that all known general 
features of dielecric relaxation may be obtained from this model by the application of a 
pair approximation at high frequencies and an application of percolation theory at low 
frequencies. 
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1832 A Hunt 

In a glass in which disorder may be strong enough to make transport along certain 
‘percolation’pafkr much easier thanelsewhere, and inwhichafairlysmooth distribution 
of individual relaxation times exists, from the fastest local processes to the slowest local 
processes necessary to be included for macroscopic diffusion, these slowest processes 
then define not only the DC conductivity but provide the frequency scale of the variation 
of the low frequency AC conductivity as well. 

At high frequencies, a distribution of relaxation times with an exponential depen- 
dence on random variables, i.e. E,, is known to give non-Debye behaviour with 
u(w) cc wJ, s < 1. The departure of s from 1 arises from a non-uniform dependence of 
n(E,) on E,. At low frequencies, relaxation of clusters of individual processes must be 
considered. Quasi-universal behaviour results from this model. The frequency depen- 
dence at low frequencies is normally supralinear, with the power a function of the 
dependence of cluster relaxation times on cluster size and of the distribution of cluster 
sizes. 

The transition from AC to DC conduction is a transition from local to non-local 
relaxation (from pair processes in parallel to pair processes in series). Local relaxation 
can be described in the main by single-particle theories (but see section 2.4). The non- 
local relaxation at low frequencies has aspects of a many-particle theory. If percolation 
theory isutilizedtodescribe the non-local relaxation, the result isautomatically obtained 
that the transition occurs at a critical frequency, w,, proportional to the DC conductivity, 
whetheru,,isactivated,or(inelectronicglasses)isgiven by Inode -(To/T)P,withp = 
l/(d + 1) in the ‘Fermi glass’ (variable range hopping, Mott 1969) or p = 1/2 in the 

electron glass (low temperature impurity conduction systems, Efros 1976, Hunt 1990a). 
In electronic systems (Hunt 1990a-d) quantitative agreement with experiment (Long et 
al1988, Paalanen etol1983) was obtained. 

Although a smooth variation in the distribution of relaxation times is sufficient to 
explain the general features of the experimental data, specific cases may be consistent 
with additional structure in the distribution of relaxation times. 

Apreviouswork(Hunt 1990e)showedthat thefact that theratioofthelow frequency 
conductivity to the occonductivity, ud,, scales with a critical frequency proportional to 
uddc is a consequence of percolation theory, the purpose of the current paper is to show 
that the low frequency conductivity derived using percolation theory agrees with the 
pair approximation at the critical frequency. This confirms the explanation of the Barton 
(1966)-Nakajima (1972)-Namikawa (1975) (B-N-N) relation as well as the shape of the 
a-peak. 

4 

1.2. The role of Coulomb interactions 
At high frequencies, when relaxation is local between isolated pairs of sites, the role of 
Coulomb interactions is largely restricted to the distribution ofbarrier heights but at low 
frequencies, when relaxation is non-local, Coulomb interactions sequentially correlate 
individual transitions, making the relaxation a collective phenomenon and slowing the 
relaxation significantly. An exact many-body treatment of the Coulomb interaction is 
not proposed in this paper. It isproposed totreattheCoulombinteraction according to its 
effect on relaxation times of charged particles constrained to move on one-dimensional 
percolation paths. 

In the electron glass it has been argued (Hunt 1990d) that the sequential correlation 
of the slowest transitions on the percolation path reduces the free energy. The increase 
in the interaction energy if the transitions are not correlated is sufficient to outweigh the 



Transport in ionic conducting glasses 7833 

reduction in phase space (and resulting increase in - TS) if they are. The result obtained 
(Hunt 1990d), that A% = N E ,  - NkTln{l + eFro/kT), with N the number of ’slowest’ 
transitions in a linear chain and E8 a typical increase in interaction energy resulting from 
not correlating ‘critical’ transitions, is positive for all N if kT < Er It is not known with 
any certainty, but it is expected here that this effect should be even greater in ionic 
conductingglasses than in the electronglass, because in the latter the electrons can ‘hop’ 
variable distances, and thus past one another. The height of a potential barrier between 
two sites in the electron glass is immaterial; since electronic ‘bopping’ is actually phonon 
assisted tunnelling, what matters is the difference in energy between the initial and final 
configurations. In ionicconducting glasses, however, discrete ions are assumed to follow 
one another by hopping over barriers along one-dimensional paths of enhanced mobility. 
On these paths a similar general argument involving the free energy should apply. 
Alternatively, the Couloumb repulsion could be assumed to increase individual barrier 
heights significantly (slowing exponentially the individual transitions) if transitions were 
not sequentially correlated. If individual critical transitions are assumed to be sequen- 
tially correlated, the relaxation time of a cluster of N such critical transitions (with r = 
rc cc 1/0~)willbeenhancedproportionaltothefactorN.Theenhancementofrelaxation 
times has a critical influence in the low frequency dielectric behaviour, and must be 
added to single particle theories. Similar behaviour has been postulated due to Hubbard 
repulsion (intra-site Coulomb repulsion between electrons) by Richards (1977) and 
Shklovskii and Efros (1984) and termed the ‘traffic jam effect’. 

An additional feature is that ‘faster’ transitions on this path cannot admit charge 
transfer unrestrictedly, as the build up of charge between such faster transitions and 
blocking ‘critical’ transitions would also tend to increase the individual barrier heights. 
This increase in barrier heights would be evident in regions in which the charge density 
wereincreased. Thusat low frequencies (long times) the fastertransitions are considered 
to be slowed to the critical transition rate. Although one might expect that the ‘traffic 
jam’effect could reduce the barrier height of that critical transitioncausing the block, a 
self-consistent treatment can result in a slowing in the rate determining transition 
(Richards 1977). If sequential correlation is assumed, no charge redistribution (com- 
pared to the no field case) results and the effect only slows the ‘faster’ transitions, with 
a non-exponential reduction of the DC conductivity. 

1.3. Comparison with other theories 

In a new theory (Elliott 1988, Elliott and Owens 1989) called diffusion controlled 
relaxation, the enhancement over Debye in the conductivity at high frequencies is 
assumed to come from the effect of an interaction between the DC, assumed diffusive, 
transport, characterized by an activated relaxation, and much faster Debye type relax- 
ation at two-site centres of non-bridging oxygens (NBOS). This approach seems to US 
invalid, as through Coulomb interactions a very slow (DC) process is deemed capable of 
speeding up a very rapid process (AC relaxation). The reason for this inconsistency would 
seem to be the fact that Elliott only considers the possibility that the arrivalof a ‘diffusing’ 
ion in the vicinity of an NBO may trigger the relaxation of a metallic ion, but he does not 
consider the possibility that the prior existence of such a potentially ‘diffusing ion’ at 
such a site in the identical configuration will block the relaxation of the ‘polarizable’ion 
in the case when the field is reversed. 
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Work by Elliott and Henn (1990) based on a pair approximation considers the 
tendency of s = d(lno)/d(lnw) to approach 1 with reduction in temperature. For- 
mulations of s in terms of the upper limit cut-off, vph, usually yield a temperature 
independents. However, it was recently shown (Hunt 1990c, f) that expressions of s 
based on the critical frequency, w,, yield s = 1 - n(kT/E‘)”, with E’ a characteristic 
energy defining the loss peak (a-peak) frequency, and n a number which vanes from 
system to system. 

A cluster approach to the Fermi glass developed by Boettger and Bryksin (1985) 
is known to yield results incompatible with experiment in one-dimensional systems 
(Bernasconi et af 1980, Hunt 1990b) as well as in three-dimensional systems (Hunt 
1990~). The failure in one dimension can be rectified by modifying their broken bond 
network to short resistances much smaller than the maximally valued resistances; in 
three dimensions an error arises from omission of the enhancement of relaxation times 
of compound processes on large clusters. This defect is shared by a work of the author 
(Hunt 1987) as well as Zvyagin (1980). 

Other approaches, developed from a treatment by Scher and Lax (1973), have been 
termed thecontinuous time random walk (CIRW) (Dyre 1988, Niklasson 1987, Odagaki 
and Lax 1981). There the concept of fractal time, as well as of percolation networks 
involving fractal dimensionalities, has been proposed as bearing on conduction. It is 
believed here that the CTRW is physically incorrect. Specific criticisms include the treat- 
ment of clusters and the lack of distinction between systems with strong Coulomb 
interactions and those in which the Coulomb interaction may be neglected. 

The CTRW (as Boettger and Bryksin) assumes that conduction takes place on the 
infinite, percolation, cluster at low frequencies, and on large clusters at frequencies 
above the so-called critical frequency. It has been shown (Hunt 1990c, e) however, that 
cluster relaxation times grow with cluster size. The particular enhancement is system 
dependent and may be proportional to the first or to the second power of the cluster 
length. Since processes with relaxation times inversely proportional to the frequency, 
w ,  make the largest contribution to the real part of the conductivity, the size of the most 
important clusters is a function of the frequency of the applied field. This continuous 
dependence of the scale of the relaxation on w is not a feature of the CTRW model. The 
associationof percolation with some finite frequency iscorrect, insofar as the connection 
of all bonds with relaxation times less than the critical relatxation time, re a l/w, forms 
an infinite network; the neglect of the enhancement of relaxation times, however, 
misses the fundamental physics. In  particular, charge transport over infinite distances 
(percolation) actually occurs in the limit of infinite time, or zero frequency, as the 
relaxation times of infinite clusters diverge. Thus, there is no universal dependence of 
the conductivity on percolation exponents in the limit w+ U,, but there is a universal 
dependence in the limit w- 0. 

The m w  treatment may thus not escape the difficulty of the original treatment of 
Scher and Lax (1973) namely that it should give a frequency-independent conductivity 
at low frequencies. In the original CTRW in one dimension, the cause of this difficulty lay 
in the assumed homogeneity of the chain, which led to equal probabilities of hopping in 
either direction. Even if inhomogeneities of the percolation cluster are included, these 
inhomogeneities lead to a lowest order quadratic dependence on w of u(w) - ffdc, a 
dependence whichisnever observed (e.g. Jonscher 1977; Long eta1 1988;Goetze 1991). 
It is hard to see how assuming transport on the percolation cluster at all finite frequencies 
less than w, can give a physically meaningful frequency dependence for u(w) - ff&, 
other than the quadratic dependenced of Boettger and Bryksin (1985). 
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The error in associating universality with w, is explicit when Niklasson (1987) states 
that the exponent, s, on d above the loss peak is related to percolation. In facts is given 
by thedistribution of pair relaxation times and varies strongly from system to system. 

2. Calculations 

The calculations given are for the real part of u(w); the imaginary part can of course be 
obtained by dispersion relations. 

2.1. The pair approximation 

The polarization current, Zij of a pair of sites behveen which an ion can jump by hopping 
Over a barrier is given in the model of Pollak and Pike (1972) and Anderson et a1 (1972) 
as 

Iij  = iwaij = eAfro [ (w2z8 + iw)/(l + w 2 z i ) ]  (2.1) 
where mtj Q ri is the polarizability of the pair, r, is the physical extent of the pair and Af 
is the change in occupation of one member of the pair induced by the application of the 
electric field Fgiven by 

Af - eFr,/kT (2.2) 

to lowest order in the field. For ionic conduction, ro is of the order of one interatomic 
spacing and is not considered a random variable in the model of Pollak and Pike. Of 
course, if this model is assumed to be consistent with the DC conductivity as well some 
variation in pair lengths, ro, must be allowed. Nevertheless this variation should be 
relativelysmallexceptin thedi1utelimit.Thisis becausein thepictureofrandombamers 
there is no point in making the hop of a given ion much larger than the typical separation 
of these ions, as it would only encounter more barriers over which it must hop. 

The usual assumption (e.g. Pollak and Pike 1972, Dyre 1988) is that the values, zij, 
depend on barrier heights, Ejj,  as 

rii = v $  exp[E,/kT] (2.3) 

with vph a ‘phonon’ frequency, roughly 10l2 Hz. Egis a random variable, ensuring a large 
spread in the values of the zjj even if the spread in the values of E,, is not too large. The 
conductivity is then 

(2.4) 

with n(E) the volume density of pairs with barrier height, E. This procedure of treating 
pair currents is valid so long as the main contribution to u(w) comes from pairs which 
may be treated independently from the remainder of the system. This latter condition 
is satisfied as long as the remainder of the system responds much more slowly to the 
electric field than the pairs considered (valid at relatively high frequencies); i.e. if the 
density of pairs with z S l/w i s  not so large that clusters of pairs satisfying this condition 
form. The DC conductivity is added separately for reasons which will he made clear. 

It is known that only those pairs with t = l / w  contribute to Reu(w). Thus one has 

u(w)  = ud, + (e’/kT)rawJ[ws(E) + i]n(E)dE/[l + w 2 z Z ( E ) ]  

Reu(w) = udC + ora(eZ/kT)N’[kTInvp,/w]. (2.5) 
Here N’[kTln(vph/w)] is an integral over the probability density n(Ei),  and gives the 
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concentration of pairs in a (small) energy range about kTln(v,,/w) = E (such that wz 
is of order 1 throughout the range of energies). 

The real part of equation (2.4) can also be written 

Reu(w) = udc + (r~/R)Jw272n(E)dE/(1 + w%*) (2.6) 
if one writes for 7 

z = RC = (e2/kT)R. (2.7) 
Here Cgives the charge generated per unit change of the potential difference between 
the two sites of a pair. This interpretation is consistent with the derivation of Pollak and 
Pike (1972), in which the factor arises from the expansion to first order of an occupation 
function. It also implies that the pair is singly occupied, a condition which can be made 
to hold for any frequency if transitions along the percolation paths are sequentially 
correlated. Equation (2.6) isessentially identical to the pair approximation for electronic 
glasses where it is possible to define R and C unambiguously (Miller and Abraham 
1960, Pollack 1974). It will be seen, however, that pairs with short relaxation times, 
which would thereby be assigned a low resistance value, can only be characterized by 
this resistance at high frequencies. At low frequencies, transport through such pairs can 
be blocked through Coulomb repulsion by bottlnecks further along the (percolation) 
conducting path. This particular objection should not apply to transitions with zc, 
however, as slower transitions are excluded from the percolation path. Thus the identi- 
fication 

7, = R,(e2/kT) (2.8) 
ismade for any frequency. Taking all pairs as approximately the same length isconsistent 
with assuming that the capacitance of each is e*/kT; the variation with frequency of the 
charge passed by a particular pair is attributed to a change in the resistance. 

For small w the pair approximation breaks down. Individual processes exist with zt, 
rangingsmoothly from very small values all the way up to valuescommensurate with u, 
(justifying the use of percolation theory in the calculation of ode) and somewhere in the 
neighbourhood of a critical frequency, w, cc udC, at least, the pair approximation must 
break down. This critical frequency, w, is defined such that the ‘sub-lattice’ composed 
of all pair processes with rates w , ~  2 w, form a macroscopic continuous path. 

2.2. The ~cconductiviry 

We write the DC conductivity as being 

cc exp(-Eo/kT) (2.9) 
where 

joEon(E)dE = a(d)/ra (2.10) 

defines Eo by expressing the condition that some well-defined fraction, a(d) of bonds 
linking nearest neighbours in dimension d must be connected before a continuous 
network of infinite size linking nearest neighbours can exist. The integration is therefore 
cut off at the (lowest possible) maximum energy (corresponding to a maximum z) which 
must be included in order to assure percolation. The expression for the DC conductivity 
will depend on the cluster structure. It is assumed here that d-dimensional clusters 
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(d S 3) can be constructed in d-dimensional surfaces. The separation of the surfaces (if 
d < 3) is given by a length e‘. Using the assumption of equation (2.8) relating rc and R,  
allows us to express ud, in terms of a critical resistance, R,, as 
ok = ro/ed-’ e’Wd)R, = (e*ro/kTed-lef(3-d)r~) 

= (e2~,,ro/kTed-L,‘(3-d) )exp(-Eo/kT). (2.11) 

An argument for the choice of the lengths, r,, .E, and e‘ ,  is now given. The length ro in 
the numerator is assumed to give the linear separation of the largest ‘resistances’ on the 
current carryingpath. The length t i n  the denominator is assumed to give the separation 
of pairs with z, within the d-dimensional surface in which the percolation cluster is 
embedded. The quantities e and e’ are given by [N’(kTlnv,~wc)] = [“(E,)] = 

If Coulomb interactionscould be neglected, the appropriate length in the numerator 
of equation (2.11) would also be esince egives the typical separation of pair processes 
with rcon the percolation path. We choose roinsteadof e because of the so-called ‘traffic 
jam effect’. Due to Coulomb repulsion smaller ‘resistances’ can only pass charge when 
the blocking, ‘resistance’ has done so; when the DC conductivity is considered they must 
be assigned resistances equal to R, as well (if C is constant). Thus an effective resistance 
of the percolation path is increased roughly by a factor e/r, by such a ‘traffic jam effect’, 
and the ~cconductivity is reduced by the Coulomb repulsion. 

e-d,el(d-31, 

2.3. Low frequency conducriuity 

At very low frequencies, w < w, = v phexp( -Eo/kT), clustersof processes form in which 
the transport of charge is correlated over large distances. If one considers instead the 
temporalevolution ofclustersalongtime after the application ofa ocfield, the frequency 
dependent conductivity may be obtained by a simple Fourier inversion, or equivalently 
by the substitution t+ l /w (Pollak 1987). 

We will argue that the current density, j ( t ) ,  after a time t has elapsed is given by 

i(t) = Ud,F+ cvo(e/ro)Un(t) 

= odcF + K(d)C(Fr , ) (e / ro) (rn/r~)[e-de‘ (d-3)N( t ) ’+d-df ] -L  (2.12) 

where CVo(e/r0) is a cluster polarization charge, U is its average velocity, and n(t) is the 
volumeconcentrationof contributingclustersat time t .  In thisequationdis thedimension 
of the surface on which transport occurs, dr is the fractal dimensionality of clusters in 
that surface, K(d) is a numerical constant which depends on the dimension, C = e2/kT, 
and N(t )  is the number of slowest rates, r,, in a one-dimensional path of length N(t)e. 
The justification for this expression follows. 

If the slowest individual transitions are sequentially correlated it can easily be seen 
that after a time t > re, equilibrium can be reached only in clusters of length N e  e (f/ 
.,)e. In each unit of time equal to re, the typical size of clusters which have reached 
equilibrium grows to length e.  This cluster growth can be represented by a polarization 
current, qu (charge times velocity), while the (on the average) continuouscluster growth 
provides a source and sink of charge allowing the flow of a steady state (DC) current 
within the clusters. The result for the polarization current 

I = qu = (cFro)(e/~o)(rll/r,) (2.13) 

arises because in each length ro, the typical capacitance C generates a charge 
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q = CVo =CFro, while a total of E/ro pairs can be found, on the average, between two 
slowest rates. The average velocity, U, of the individual ions is the hopping length, ro ,  
divided by the transition time, rc. The concentration of one dimensional paths (with 
length between N e  and [N + A w e )  is given by an integral over the probability density, 
nNdN, and is approximately equal to the product of nN and an appropriate width of 
acceptable paths, taken to be small on a relative scale, but proportional to N .  The 
probability density, nNdjv, has been shown to be (the derivation by Hunt (1990~) is 
based on the statistics of Stauffer 1979 and is given in the appendix) 

n N d N  = ~(d)e-~e'(~-~)~(r)-(~+~-~/)d~. (2.14) 

The concentration of contributing clusters is proportional to N - ' L + d - d f ) ,  as in equation 
(2.12). The numerical factor K ( d )  depends only on the dimensionality of the subspace 
containing the clusters. Substituting N(r)  = t / q  into equation (2.12) and transforming 
to the frequency domain 

Reo(w) = U,, + K(d)(e2ro/kTed--'  e " 3 - d ' t c ) ( ~ / ~ ) c ) '  + d - d /  
(2.15) 

= UdC[l + K(d)(W/WC)"d4f], 

In one dimension (e.g. the electron glass) 

u(w) = o d c [ l  + K(l)(w/wc)l, (2.16) 

Application of the Kramers-Kronig dispersion relations to Reu(w) throughout the 
entire frequency range results in 

Imu(w) = ~(d)o , , [~ (d ) (w/ i , )  - ~ ( d ) ( w / w , ) l + d - d / ]  + . . . . ( d  ' 1) 

'Jde[('JJ/W,) In(w/wc)l ( d =  1) (2.17) 

where higher order terms have been neglected. Here the proportionality symbol implies 
that constants of order unity have been neglected. A and Bare numerical constants and 
are dimensionally dependent with A > B .  

From equation (2.17) one gets immediately 

Ree(w) ImU(w)/w = K(Ud,/w,)[A - B ( w / w ~ ) ~ - ~ ~ ]  (2.18) 

R 4 w )  = (odc /wc) ln (wdw)  (2.19) 

udc = w,e(O)/K'(d) (2.20) 

or in one dimension, 

where the latter expressions hold for w < w,. As aconsequence 

with K'(d)  = K(d)A(d), except in one dimension. The result can be identified as the 
B-N-N relation, if it can be shown that the loss peak frequency in Ime(w) is the same 
frequency as the critical frequency, w,. To demonstrate this, we must show: (i) that the 
upper limit of applicability of the low frequency result is U,, (ii) that the lower limit of 
applicability of the pair approximation is also U,, (iii) that the two expressions yield 
essentially the same result at w,. We examine here Reu(w), as it relates directly to 
Im&(w). 

As the low frequency result for u(w)  is evidently an expansion in the variable w/w,,  
the upper limit in frequency of applicability of a formula including only the first term 
must obviously scale with w,. 
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It has already been argued on physical grounds that an absolute lower limit of 
applicability of the pair approximation is w,. But in a range of frequencies near w,, the 
pair approximation needs to be modified, reflecting the onset of cooperative behaviour, 
i.e. multiple hopping (this regime has been defined in a similar context for variable 
range hopping systems by Pollak (1974), although without the emphasis on cooperative 
behaviour). 

2.4. Multiple hopping regime 

The pair approximation is 

Reu(w) = udc + w r a ( e ’ / k T ) N ’ [ k T l n ( ~ ~ ~ / w ) ] .  (2.21) 

For frequencies of the order of, hut somewhat larger than w,, no clusters with large 
numbers of t ’ s  equal to z, exist, but clusters with one z, and many smaller x’s can form. 
A total of t/ro charges can each be transported a distance ro each time one charge with 
a blocking t = t, hops. This approximate result reflects the fact that the typical spatial 
separation of all transitions with T <  zc is of the order of ro, while the typical separation 
of those transitions with z = r,is of the order of e by definition. (Of course this treatment 
is approximate because not all faster transitions will be linked with those transitions with 
t = tc.) This ‘traffic jam’ effect tends to increase the number of charges hopping in phase 
with the field by the factor t/ro, but the distance which each charge hops is unaffected. 
Therefore, in the vicinity of w, the pair approximation must be increased by the factor 

or 
Reo(w) = wro~(e2 /kT)N’ [kTln(vp , /w) ] .  (2.22) 

Evaluated at w = U,, kTln(u,,/o) gives by definition Eo. N’[EO] is, by definition 
t-ded-3, so that, 

Reu(w,) = udC + = udc uddc. (2.W 
Comparing this result with the result for Reu(w,) (equation 2.16) arrived at from the 
low frequency treatment, 

Reu(w,) = ud,[l + K(d)(wc/o,)‘+d-df] = pdc[ l  + K(d)] (2.24) 

demonstrates their essential equivalence, proving that the treatment discussed here is 
consistent with the B-N-N relation with the identity o,= vphexp[-TO/T] (and 

= exp[-To/TI). 
Note that the ‘traffic jam effect’ enhances the low frequency conductivity. 

3. Conclusions 

The pair approximation for the high frequency conductivity of glasses is based on the 
assumption of a wide spread of individual transition rates. It is demonstrated here that 
the pair approximation breaks down in the vicinity of the loss peak frequency, o,, in 
the imaginary part of the dielectric constant. A cluster theory for the low frequency 
conductivity based on the statistical distribution of clusters given by percolation theory 
istheoretically consistent with the pair approximation and the tworesultsareguaranteed 
to join fairly smoothly at w,. The growing importance of Coulomb interactions with 
reduction of the frequency can be treated within the framework of percolation theory. 
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The B-N-N relationship, udc = Bw<&(O), is a consequence of the applicability of 
percolation theory (as long as e (@)  does not diverge in the limit of zero frequency). The 
two different sequences of glasses reported by Namikawa (1975), correspond to two 
different values of E ;  it is natural, though unconfirmed, to assume that these two values 
correspond to the two possibilities mentioned here, that the ID percolation paths are 
constructed randomly throughout the bulk, or that they are constructed within two- 
dimensional layers. The third possibility, that these paths are structurally confined to lie 
strictly along independent one-dimensional channels, is inconsistent with the B-N-N 
relation as in this case the frequency dependent dielectric constant diverges in the limit 
of zero frequency. Nevertheless such a divergence has been observed in the electron 
glass (Paalanen er a/ 1983) and possibly in ionic glasses as well (see Mansingh el a1 1972). 

The non-analytic frequency dependence of .(U) on w’ at high frequencies is a direct 
result of the wide spread of transition rates; the departure of s from 1 is dependent (as 
argued by Pollak and Pike (1972)) on the exact form of the distribution, and certainly 
not (as claimed by Dyre 1988) on an artificial cut-off at some large T, or low rate. Non- 
analytic behaviour at low frequencies results from enhanced relaxation times of large 
clusters of individual transitions due to sequential correlations (resulting from Coulomb 
repulsion). When transport may be considered restricted to one-dimensional channels 
(deep in the glass regime, due to a wide spread in transition rates), this formulation in 
which the relaxation time of a cluster is proportional to its linear extent should be 
adequate. Fractal time seemsunnecessary; the non-analyticity at low frequencies derives 
from the non-integral dependence on N of the volume density of chains of length N .  
This number is related to the fractal structure of randomly generated large clusters, at 
least in the treatment reported here. Although powers of the frequency compatible with 
the results derived here, 1 + d - df = 1.6 (3 - d) = 1.8 (2 - d) are seen, it has not been 
reported that the values of these powers are universal. On the other hand it will be 
difficult to reconcile the apparent universality of the constant B in the &N-N relation 
with any non-universal power of the frequency, whatever theory is applied. 

Further research to determine whether cluster relaxation times may be always 
expressed as integer powers of the linear dimension of clusters is desirable. It is believed 
here, however, that this result will stand; since average (topologically) sideways hopping 
probabilities are unaffected by application of a field. and since the distribution of 
transition rates is very wide, assumption of ID percolation paths should be reasonable. 
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Appendix 

A review of the derivation of equation (2.12) is given. The idea is that clusters formed 
from individual bonds with r < r, are replaced by bundles of chains, each oriented more 
or less parallel to the applied field. The distribution of clusters is taken from Stauffer 
(1979). The distribution of chains on a given cluster is deduced from scaling and nor- 
malization (conservation) principles. Finally the distribution of chains in the system is 
obtained by a suitable integral over individual clusters. 
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In Stauffer (1979) a formula is given for the volume density, n&, of clusters of s 
elements of unit length. The formula for systems in which the lengths scale by ro is 
modified as follows 

n,& = CI(d)-'f(r)rid& ( A 0  
where ro is the length of each element, f a scaling function of the variable z = Ipc - p IS., 
pc the critical value of the site or bond probabilityp, C, (d )  a dimensionally dependent 
constant, and z and U are critical exponents. As we are interested in cluster sizes right 
at critical percolation, we take p = p. and absorb f(0) into C,(d). 

A cluster of s elements has linear extent 
= m e = r  0 s  (A2) os C2(4 

where the factor regives the lengthofeachelement,m isthe numberofslowest elements 
on a linear path traversing the cluster, the separation of the slowest elements, and 
l /av = d, the fractal dimensionality. 

Using 

n,ds = n,dm (-43) 

('44) 

for the probability density, n,dm of clusters with m elements yields 
= , , , -d- l )e-d,  

m 

The exponent - ( r  - 1 + uv)/m = -d - 1 is given by the dimensionality dependent 
scaling law (Stauffer 1979). A cluster of linear extent me is now replaced by a bundle of 
chains each of length Ne. The number of N-chains on a cluster for which the longest 
chain has m elements is assumed to obey a scaling relationship in the variable N/m, i.e. 

= mSf(N/m). ( A 9  
The value of /3 is determined by requiring that the total number of elements on all the 
N-chains is equal to the total number of elements on the original cluster, 

mdt =mp Nf(N/m)dN = matz l 
so that 

Integration of nN,, over all m-clusters (m > N) gives 

nN = ]idmCl(d)Cz(d)(mt) -dmdr3f(N/m) = K(d) t ' -dN-2-dfdr  (A8) 

with K(d)  another dimensionality dependent constant. The density of chains of length 
N e  in a d-dimensional surface is given by equation (A8). The typical separation of such 
surfaces has been assumed equal to e'. Thus the result for nN referred to the three- 
dimensional system is 

nN = K ( d ) N - 2 - d + d , e - d e ' ( d - 3 )  ('49) 
and the density of paths is proportional to the inverse cube of a length. 

Equation (A9) is identical to equation (2.15). If transport is restricted to one- 
dimensional channels of separation e',  which do not interfere with each other, or cross 
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(asin theelectronglass) thend = d,andnN = 1/@. Thenumberofchainsperunit length 
which have length between N and N + A N ,  can be obtained by integrating n,,dN with 
result N e ' .  The length, N e ,  of such a chain, times the number of such chains i s  therefore 
a constant independent of N .  This property can be related to 'self-similarity' (it is in 
agreement with Stauffer 1979) but it also holds if the distribution of chains is sharply 
peaked about a value of Nwhich gradually increases with time. Thus in one dimension, 
the result for nN may be unrelated to percolation theory. This is the reason why the 
density of clusters needs to be investigated generally. 
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